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Multilevel Regression Analyses to Investigate the
Relationship Between Two Variables Over Time:
Examining the Longitudinal Association Between
Intrusion and Avoidance

Michael K. Suvak, Sherry M. Walling, Katherine M. Iverson, Casey T. Taft,
and Patricia A. Resick
National Center for Posttraumatic Stress Disorder, VA Boston Healthcare System, Boston, MA

Multilevel modeling is a powerful and flexible framework for analyzing nested data structures (e.g., repeated
measures or longitudinal designs). The authors illustrate a series of multilevel regression procedures that can
be used to elucidate the nature of the relationship between two variables across time. The goal is to help
trauma researchers become more aware of the utility of multilevel modeling as a tool for increasing the field’s
understanding of posttraumatic adaptation. These procedures are demonstrated by examining the relationship
between two posttraumatic symptoms, intrusion and avoidance, across five assessment points in a sample of rape
and robbery survivors (n = 286). Results revealed that changes in intrusion were highly correlated with changes
in avoidance over the 18-month posttrauma period.

As theories accounting for adaptation following exposure to
traumatic events become more sophisticated, they increasingly in-
clude predictions about the course of adaptation over time (e.g.,
Bonnano, 2004). In addition, research examining risk and re-
siliency factors has demonstrated that adaptation following trauma
involves a complex interplay of multiple factors (see Vogt, King,
& King, 2007). Enhancing our understanding of posttraumatic
adaptation requires testing complex hypotheses involving the rela-
tionships among multiple variables across time (Litz, 2007). Fortu-
nately, recent advances in quantitative methodologies allow trauma
researchers to respond to the call for improved multivariate, lon-
gitudinal, and prospective research. The purpose of this article is
to demonstrate how multilevel regression analyses can be used to
investigate the relationship between two variables across multiple
assessment occasions. For example, trauma researchers might want
to understand the association between substance use and symp-
toms of posttraumatic stress disorder (PTSD) when both have
been measured on multiple occasions (e.g., Coffey, Schumacher,
Brady, & Cotton, 2007), or they might be interested in evaluat-
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ing whether changes in PTSD over time are related to changes in
life satisfaction (e.g., Schnurr, Hayes, Lunney, McFall, & Uddo,
2006).

Three multilevel regression techniques are demonstrated. First,
we show how to examine the bivariate association between two
variables across multiple time points. Second, we describe stan-
dard (univariate) growth curve analyses to depict the nature of
change over time separately for two variables. Finally, we illustrate
a multivariate change procedure described by MacCallum, Kim,
Malarkey, and Kiecolt-Glaser (1997) to elucidate how change over
time in one variable is related to change over time in another
variable (i.e., correlation of change). Although our main goal here
is to explicate multilevel analytic techniques, in doing so we in-
vestigate a relationship that is of interest for trauma researchers
(e.g., Creamer, Burgess, & Pattison, 1992): the relationship be-
tween posttraumatic symptom clusters of intrusion (or reexperi-
encing) and avoidance. We demonstrate the use of these tech-
niques using data from 340 rape or robbery survivors (described
below).
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A S S E S S I N G T H E S T R E N G T H A N D N A T U R E O F A
B I V A R I A T E R E L A T I O N S H I P A C R O S S T I M E
Multilevel regression techniques were developed to analyze nested
or hierarchical data structures (e.g., Raudenbush & Bryk, 2002).
For a longitudinal design, repeated assessments are nested within
individuals. The repeated-measures, or within-subjects, compo-
nent of the model is referred to as Level 1, whereas the between-
individuals component of the model is referred to as Level 2. For
our demonstration, repeated assessments of intrusion and avoid-
ance symptomatology make up Level 1, which are nested within
individuals, the Level 2 component of the model. Understanding
the regression equations is essential to understanding multilevel
models.

The equation often used to describe standard (cross-sectional)
linear regression analyses is as follows:

Y = b0 + b1 X + e 1 (1)

The outcome variable Y is described as a function of a predictor
variable X , an intercept term b0, and a residual term e . The re-
gression coefficient associated with predictor b1, or the slope term,
provides an estimate of the strength of the association between the
predictor and outcome (i.e., an increase of one unit in the pre-
dictor variable is associated with b1 unit increase in the outcome),
the estimate of the intercept b0 indicates the predicted value of
Y when the predictor X is zero, and the residual e indicates the
distance between the predicted value of Y and the actual observed
value of the outcome variable (i.e., unexplained, leftover, or error
variance). This standard regression equation needs to be adapted
for nested or hierarchical data to account for (a) the fact that each
individual (Level 1 unit) has multiple data points, and (b) there are
multiple sources of error-Level 1, or within-subjects, and Level 2,
or between subjects. The Level 1 regression equation for assessing
the bivariate relationship across multiple occasions is

Yit = bi0 + bi1 Xit + e it (2)

As in standard regression, Y denotes the outcome variable.
Because each individual has multiple data points, the subscripts i
and t signify that the regression equation is predicting a particular
score on this outcome variable for an individual participant i,
at a specific point in time, t . Next, bi0 denotes the intercept
for participant i , and bi1 denotes the slope coefficient for the
regression of the outcome variable Y on the predictor variable X for
participant i . Finally, e it represents the Level 1 regression residual
term (i.e., unexplained, leftover, or error variance) indicating how
far a data point deviates from the expected value (or regression
line) for participant i . It helps to think of the Level 1 component

1We adopted a revised version of the notational system used by Raudenbush and
Bryk (2002).

of a multilevel analysis as fitting separate regression lines for each
participant producing estimates of the intercept (bi0) and slope
(bi1) for all Level 2 units (i.e., participants).

The purpose of the Level 2 component of the model is to
evaluate how the Level 1 coefficients are distributed, both in terms
of mean level and variability, across Level 2 units (i.e., participants).
Therefore, there is always one Level 2 regression equation for each
Level 1 regression coefficient:

bi0 = G00 + Ui0 (3)

bi1 = G10 + Ui1 (4)

These equations provide two types of estimates. Estimates re-
ferred to as fixed effects (G00 and G10), depict the mean of the Level
1 coefficients across Level 2 units (i.e., participants), whereas the
random effects or variance component of the model (Ui0 and Ui1)
describe how much dispersion or variability there is in Level 1 co-
efficients across Level 2 units. Let us now look at the Level 2 equa-
tions more closely. The dependent variables for these equations
are the Level 1 regression coefficients. For the equation predicting
initial status (bi0), G00 represents initial status aggregated across
all participants, and Ui0 is the Level 2 regression residual indicat-
ing the difference between that particular individual’s initial status
and the overall/aggregated initial status. Likewise, for the equation
predicting slope (bi1), G10 represents the strength and direction of
this association aggregated, or averaged, across all participants and
provides an estimate of the bivariate association between the pre-
dictor and outcome variable. Ui1 is the Level 2 regression residual
indicating the difference between that particular individual’s slope
and the average slope of the sample.

The variance component of multilevel models includes esti-
mates of the total Level1 (within-subjects) variability, or variance,
which is often referred to as σ 2 and is derived from each individual’s
estimate of e it , as well as Level 2 (across participants) variability,
or individual differences, in the intercept and slope, which are de-
rived from each individuals estimates of Ui0 and Ui1, respectively.
In addition, the variance component of multilevel models includes
estimates of the covariance among random effects. However, this
is more germane to models discussed later when we examine the
associations between initial status and change over time and asso-
ciations between two growth parameters in growth curve models
and will be described later. In sum, multilevel models produce
estimates of mean level and variance (i.e., individual differences in
the Level 1 coefficients across Level 2 units) in the parameters.

Several clarifications about this initial model are warranted.
First, the intercept terms bi0 and G00 can be interpreted as the
value of the outcome Yit , when the predictor variable is zero. In
some instances, such as when a score of zero is not possible or
meaningful (e.g., an individual cannot have zero or no weight),
the predictor variable can be mean centered. Mean centering con-
sists of subtracting the mean value of a variable from each score in
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a distribution so that the intercept coefficient can be interpreted
as the value of the outcome at the mean of the predictor variable
(instead of the value of the outcome when the predictor variable is
zero in the raw score metric, as is the case for noncentered predic-
tors; see Enders and Tofighi, 2007, for a discussion of centering in a
multilevel regression framework). The second clarification regards
the interpretation of bi1 and G10. These slope terms represent
the bivariate association between the predictor and outcome (i.e.,
are higher/lower levels of the predictor variable associated with
higher/lower levels of the outcome?) when taking into account
the nested, or hierarchical, structure of the data. Although in the
longitudinal framework the predictor and outcome variables are
both assessed across time, this initial model does not include time.
Therefore, it is incorrect to interpret bi1 and G10 as “a change in
the predictor that is associated with a change in the outcome,” a
mistake that is too often made in both cross-sectional and multi-
level regression analyses. The correct interpretation of these slope
terms is that higher levels of the predictor variable are associated
with higher levels of the outcome variable, and vice-versa. This is
a subtle, yet very important, distinction.

The initial model described above provides a means to examine
an association between two variables when they both are collected
at multiple time points. Someone who is new to the multilevel
regression framework might reasonably ask why not simply use
a Pearson’s correlation coefficient using a standard software ap-
plication. The answer is that one of the assumptions underlying
standard (i.e., not multilevel) correlation and regression analyses
is that observations (i.e., data points) are independent, and with
nested data structures, this assumption is violated. In the repeated
measures framework, there is some dependency in the data be-
cause a data point from one particular participant will be more
like other data points for that participant than data points from
another participant. This is why multilevel regression analyses are
needed. They account for the nested (i.e., hierarchical) nature of
the data and do not require the “independence of observations”
assumption.

The initial model described above does not include time, so
it provides no information regarding how changes in one vari-
able are related to changes in another variable. The next section
will incorporate time by describing standard growth curve models
building towards a multivariate model that can assess how change
in one variable is associated with change in another variable (i.e.,
correlation of change or trajectories).

S T A N D A R D ( U N I V A R I A T E ) G R O W T H C U R V E
M O D E L U S I N G M U L T I L E V E L R E G R E S S I O N
King, King, Salgado, and Shalev (2003) provided a detailed ac-
count of how to conduct growth curve analyses within a multilevel
regression framework to examine posttraumatic adaptation. The
standard growth curve model examines the nature of change in

one outcome variable. This model is briefly reviewed to provide
a foundation for examining multivariate change (i.e., how change
in one variable is correlated with change in another variable over
time).

The Level 1 regression equation for a standard (univariate)
growth curve model is

Yit = bi0 + bi1time + e it (5)

Again, Yit denotes that the equation is predicting the outcome
variable Y , for a particular participant i , at a particular assessment
occasion t . Next, bi0 denotes the regression intercept representing
initial status of the outcome variable (with the first assessment
occasion coded 0 in the time variable) for individual i , and bi1

denotes the regression coefficient representing change over time
in the outcome variable (i.e., slope) for participant i . Finally, e it

represents the regression residual term indicating how far a data
point deviates from the expected value (or regression line) for
participant i at time t . Time can be represented in several ways
in the Level 1 equation to model different forms of change (e.g.,
linear, nonlinear, piecewise, etc.; for descriptions of different ways
to represent time, see Biesanz, Deeb-Sossa, Papadakis, Bollen, &
Curran, 2004; Singer & Willett, 2003). Using the data for our
demonstration (to follow), we examine linear change across five
assessment occasions. As will be seen, time is represented as the
number of months since the rape or robbery, coded 0, 2, 5, 11,
and 17, depending on the assessment occasion (number of months
minus one, so that the intercept coefficient represents initial status).

The Level 2 regression equations for a standard (univariate)
growth curve model are

bi0 = G00 + Ui0 (6)

bi1 = G10 + Ui1 (7)

The Level 2 coefficients represent the Level 1 coefficients av-
eraged across Level 2 units. Therefore, G00 and G10 represent
averages across all participants in initial status and change over
time; Ui0 and Ui1 reflect the degree to which the Level 1 coef-
ficients vary across Level 2 participants (i.e., are there significant
individual differences in initial status and change over time?). In
sum, standard growth curve analyses elucidate how a single depen-
dent variable changes over time and provides estimates of mean
initial status and change over time and the degree to which these
change parameters vary across participants. For example, military
researchers examining postdeployment adaptation might be inter-
ested in knowing the average postdeployment PTSD severity level
of the sample (G00) upon return from a war zone and how much
variability there is in this initial postdeployment PTSD severity
level (Ui0), as well as the average change over time in PTSD sever-
ity (G10) for an extended amount of time postdeployment and how
much variability in change over time in PTSD severity is present
(Ui1). They may also be interested in the degree to which initial
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status and change over time is correlated, addressing the question
of whether or not individuals who initially exhibit more severe
PTSD symptoms show larger (or smaller) decreases over time.

M U L T I V A R I A T E G R O W T H M O D E L
Though typically used to study change in one variable, MacCallum
and colleagues (1997) demonstrated that growth-curve modeling
with multilevel regression can be extended to the multivariate sit-
uation to examine how trajectories of two variables are correlated.
In this section, we provide the fundamentals of this procedure and
encourage readers interested in more specific/technical details to
consult MacCallum et al. (1997). Multivariate growth-curve mod-
els involve computing two or more growth curves simultaneously
in one model.

The Level 1 regression equation for the multivariate growth
curve model is

Yit = bi1D intr + bi2T intr + bi3D avoid + bi4T avoid

+ e intrusion + eavoidance (8)

The first difference between the multivariate Level 1 Equation 7
and the univariate Level 1 Equation 4 is that the multivariate
equation does not include an overall intercept (bi0). Dummy-
coded variables (D intr and D avoid) are included in the data set
to specify when the outcome variable is intrusion and when it is
avoidance.2 This creates separate intercepts (or initial values) for
intrusion and avoidance. Therefore, bi1 represents the intercept for
intrusion, and bi3 represents the intercept for avoidance. Likewise,
bi2 and bi4 represent change over time in intrusion and avoidance,
respectively. The second major difference is that the Level 1 residual
is split into two terms, e intr us ion and eavoidanc e , representing the
Level 1 random residuals of intrusion and avoidance, respectively.3

The Level 2 regression equations for the multivariate growth
curve model are

bi1 = G10 + Ui1 (9)

bi2 = G20 + Ui2 (10)

bi3 = G30 + Ui3 (11)

bi4 = G40 + Ui4 (12)

The Level 2 regression equations represent the aggregation of
Level 1 coefficients and the associated Level 2 residuals. Therefore,
G10, G20, G30, and G40 provide estimates of initial status in

2 For detailed descriptions of how to set up a data file to conduct multivariate
growth curve analyses, see Bauer, Preacher, & Gil, 2006; MacCallum, Kim,
Malarkey, & Kiecolt-Glaser, 1997; or contact the first author.

3 For a description of how to accomplish this using HLM, see Raudenbush, Bryk,
& Congdon, 2005, or contact the first author.

intrusion, change over time in intrusion, initial status in avoidance,
and change over time in avoidance, respectively, aggregated across
participants.

Multilevel regression analyses produce estimates of the vari-
ances and covariances of the Level 1 coefficients as well as the stan-
dard errors for these estimates (i.e., the tau matrix, the variance/
covariance matrix for the random effects; see Raudenbush, Bryk,
& Congdon, 2005, for details). The strength and statistical signifi-
cance of the association in change over time between two variables
(i.e., correlation of change, or how much change in one variable is
associated with change in the other) can be evaluated by examining
the estimate of the covariance between the two Level 1 slope co-
efficients (bi2 and bi4). This will be illustrated in the next section,
where we use the procedures above to examine the relationship be-
tween intrusion and avoidance symptoms over time with real data.

D E M O N S T R A T I O N O F M U L T I L E V E L R E G R E S S I O N
A N A L Y S E S T O E X A M I N E T H E R E L A T I O N S H I P
B E T W E E N I N T R U S I O N A N D A V O I D A N C E
S Y M P T O M S O V E R T I M E
As noted previously, the data for this demonstration came from
340 individuals who experienced a recent rape or robbery (Resick,
1988). Participants were assessed within one month (n = 286)
of experiencing the traumatic event and at follow-up assessments
occurring 3 (n = 217), 6 (n = 184), 12 (n = 105), and 18 (n =
119) months posttrauma. Although participants were assessed 1,
3, 6, 12, and 18 months postrape or postrobbery, the time variable
was coded as 0, 2, 5, 11, and 17 so that the intercept term represents
intrusion and avoidance levels upon entry into the study (one
month following the rape or robbery). One of the advantages of
multilevel regression analyses is efficiency in handling unbalanced
data. It is not a problem for the number of data points to vary across
participants, and data from participants with just one data point
are be included in the analyses. To parallel the presentation to this
point, the demonstration addresses three questions: (a) what is the
bivariate association between symptoms of intrusion and avoidance
across all assessment occasions?; (b) how do symptoms of intrusion
and avoidance change over time?; and (c) are changes in intrusion
associated/correlated with changes in avoidance? Intrusion and
avoidance symptoms were assessed by the Impact of Event Scale
(IES; Horowitz, Wilner, & Alvarez, 1979), a 15-item self-report
measure of distress subsequent to stressful life events. Individuals
are asked to rate the frequency of intrusion (seven items) and
avoidance (eight items) symptoms during the previous 7 days.
Responses are rated on a 4-point Likert scale: 0 = not at all,
1 = rarely, 3 = sometimes, 5 = often. The IES has been widely
used for 30 years and has demonstrated adequate reliability and
validity (Sundin & Horowitz, 2002). Although item values are
usually summed to form subscale totals, we analyzed average scores
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for the intrusion and avoidance subscales so the two variables of
interest would be on the same metric. Intrusion and avoidance are
separate, distinct constructs. However, because participants rate
how frequently they experience each type of symptom, the total
scale scores represent the frequency with which one experiences
intrusion and avoidance, but please note that care must be taken
when comparing the metric of two different scales or subscales.
Hereafter, we use the term intrusion to refer to the frequency of
intrusion symptoms, and avoidance to refer to the frequency of
avoidance symptoms.

We conducted all analyses with the software program Hier-
archical Linear and Non-Linear Modeling (HLM6; Raudenbush
et al., 2005) using full maximum likelihood estimation. The HLM
program was one of the first packages specifically designed for an-
alyzing nested data. Hence, it is quite efficient. However, many
other statistical packages can be used to evaluate multilevel models
(e.g., Peugh & Enders, 2005; Rabe-Hesketh & Skrondal, 2005;
Singer, 1998).

A helpful first step when conducting multilevel regression anal-
yses is to examine what is referred to as the “unconditional model,”
or intercept-only model, that is, a model that includes no predictor
variables. Consistent with the nomenclature presented earlier, the
Level 1 equation for the unconditional model is Yit = bi0 + e it ;
the Level 2 equation is bi0 = G00 + Ui0. G00 provides an esti-
mate of the overall mean of the outcome variable when taking into
account the nested structure and unbalanced nature (i.e., varying
number of assessment points across participants) of the data. The
aggregation of e it provides an estimate of σ 2, or the total Level 1
(within-subjects) variance, and the aggregation of Ui0 provides an
estimate of the overall Level 2 (between-subjects) variance.

The top section (Unconditional model) of Table 1 depicts the
results of the unconditional model with intrusion and avoidance as
outcomes in separate analyses. The regression intercept of the un-
conditional model indicated that when averaged across assessment
occasions and individuals, participants tended to endorse expe-
riencing avoidance (G00 = 1.38) more frequently than intrusion
(G00 = 1.14). Nonoverlapping 95% confidence intervals (CIs)
indicate a statistically significance difference. The distribution of
variance was also slightly different for the two outcome variables,
with total variance being slightly more evenly distributed across
Level 1 (51%) and Level 2 (49%) for avoidance compared to
intrusion (45% and 55% for Level 1 and Level 2, respectively).
The information provided by the unconditional model provides
a context to help evaluate the primary analyses including initial
estimates of variance, from which estimates of variance accounted
for by including predictors can be derived.

The second section (Analysis 1: Bivariate association) of Table 1
provides the results of the analyses examining the bivariate associ-
ation between intrusion and avoidance averaged across all of the
assessment occasions. The estimates of G10 were .71 and .68 for
the models with intrusion and avoidance as the outcomes, respec-
tively. Both of these estimates were associated with high t statistics,

and were both statistically significant at p < .001, suggesting a
significant positive association between intrusion and avoidance.
Comparing estimates of σ 2 (within-subjects variance) for the cur-
rent model with estimates of σ 2 from the unconditional model
allows for the computation of a percentage change in σ 2 ("σ 2).
This is analogous to R2 in ordinary least squares regression and in-
dicates how much Level 1 (within-subjects) variance is accounted
for by the predictor(s). Estimates of "σ 2 indicate that avoidance
accounted for 49% (r = .70) of the Level 1 variance in intrusion,
whereas intrusion accounted for 44% (r = .63) of the variance in
avoidance, both suggesting a strong association between intrusion
and avoidance. Given that G10 for both models provides estimates
for the same intrusion–avoidance association, it should be noted
that the estimates are not identical when switching the position of
the predictor and outcome variables. The slight disparity that arises
is due to the small difference in the dispersion between intrusion
and avoidance, as evident in the discrepancy in the variance com-
ponents of the unconditional model. Regardless, both estimates
suggest a relatively strong positive association between intrusion
and avoidance.

The third (Analysis 2: Standard growth curve) and fourth (Anal-
ysis 3: Multivariate growth curve) sections of Table 1 summarize
the results of the univariate and multivariate growth curve anal-
yses. The estimates of the fixed effects (i.e., average initial status
and change over time) are almost identical across the univariate
and multivariate models, supporting the viability of the multivari-
ate approach. Therefore, we will interpret them simultaneously.
The estimates of G00 indicate that on average, participants en-
tered the study with an intrusion score of 1.42 (on the 0–5 scale)
and an avoidance score of 1.64 (on the same scale). The signif-
icance tests associated with these coefficients indicate that these
estimates are both significantly greater than 0. Significance tests
associated with G10 (slope) indicate that there was a significant
mean-level decrease in both intrusion and avoidance over time.
Because intrusion and avoidance scores were on the same metric,
the 95% CIs can be examined for overlap to determine whether
or not mean levels of initial status and change over time differed
across the two outcome variables. As shown in Table 1, there was
overlap in the CIs for initial status and slope (for both the univari-
ate and multivariate models), suggesting no mean-level differences
between intrusion and avoidance. The estimates of Level 1 vari-
ance accounted for by time vary slightly between the univariate
and multivariate growth curves. The univariate models produced
estimates of "σ 2 of .15 and .18 for intrusion and avoidance,
respectively, suggesting that time accounts for 15% and 18% of
the Level 1 variance for these two outcomes. The multivariate
model produced estimates of "σ 2 of .24 for both intrusion and
avoidance for these same coefficients. Our recommendation is to
interpret the multivariate estimates, given that the multivariate
model includes more information in the computation of the esti-
mates and accounts for differences in Level 1 variance in intrusion
and avoidance symptoms. Thus, the growth curve models suggest

Journal of Traumatic Stress DOI 10.1002/jts. Published on behalf of the International Society for Traumatic Stress Studies.



Examining Change Over Time With Multilevel Regression 627
Ta

bl
e

1.
Su

m
m

ar
y

of
th

e
M

ul
til

ev
el

R
eg

re
ss

io
n

A
na

ly
se

s

O
ut

co
m

e:
In

tr
us

io
n

O
ut

co
m

e:
Av

oi
da

nc
e

U
nc

on
di

tio
na

lm
od

el
Va

lu
e

t
95

%
C

I
Va

lu
e

t
95

%
C

I

Fi
xe

d
ef

fe
ct

s
In

te
rc

ep
t(

G
00

)
1.

14
∗

18
.7

2
1.

01
-1

.2
4

1.
38

∗
21

.6
2

1.
26

-1
.5

1
Va

ria
nc

e
co

m
po

ne
nt

To
ta

lv
ar

ia
nc

e
=

1.
75

To
ta

lv
ar

ia
nc

e
=

1.
86

Le
ve

l2
va

ria
nc

e
=

.7
9

(4
5%

);
95

%
C

I=
.7

8-
.8

1
Le

ve
l2

va
ria

nc
e
=

.9
6

(5
1%

);
95

%
C

I=
.9

3-
.9

8
σ

2
=

.9
6

(5
5%

)
σ

2
=

.9
1

(4
9%

)
A

na
ly

sis
1:

B
iv

ar
ia

te
as

so
ci

at
io

n
Fi

xe
d

ef
fe

ct
s

In
te

rc
ep

t(
G

00
)a

1.
11

∗
27

.9
9

1.
03

-1
.0

9
1.

38
∗

31
.3

5
1.

29
-1

.4
6

Pr
ed

ic
to

r(
G

10
)

0.
71

∗
25

.1
9

0.
66

-.7
7

0.
68

∗
23

.9
1

0.
63

-.7
9

Va
ria

nc
e

co
m

po
ne

nt
b

σ
2

=
.5

0,
"

σ
2

=
.4

9
σ

2
=

.5
3,

"
σ

2
=

.4
4

V
A

R
(G

00
)
=

.2
5,

"
D

EV
(2

)=
16

4.
47

,
p

<
.0

01
V

A
R

(G
00

)=
.3

8,
"

D
EV

(2
)=

12
1.

11
,

p
<

.0
01

V
A

R
(G

10
)=

.0
9,

"
D

EV
(2

)=
13

7.
23

,
p

<
.0

01
V

A
R

(G
10

)=
.0

3,
"

D
EV

(2
)=

9.
25

,
p

<
.0

1
A

na
ly

sis
2:

St
an

da
rd

gr
ow

th
cu

rv
e

Fi
xe

d
ef

fe
ct

s
In

te
rc

ep
t(

G
00

)
1.

42
∗

20
.3

4
1.

28
-1

.5
5

1.
64

∗
22

.6
9

1.
51

-1
.7

9
T

im
e

(G
10

)
−

0.
06

∗
−

10
.5

5
−

0.
07

-−
.0

5
−

0.
06

∗
−

7.
67

−
0.

07
-−

.0
5

Va
ria

nc
e

co
m

po
ne

nt
b

σ
2

=
.8

1,
"

σ
2

=
.1

5
σ

2
=

.7
5,

"
σ

2
=

.1
8

V
A

R
(G

00
)
=

.9
9,

"
D

EV
(2

)=
23

1.
07

,
p

<
.0

01
V

A
R

(G
00

)
=

1.
14

,"
D

EV
(2

)=
25

2.
10

,
p

<
.0

01
V

A
R

(G
10

)=
.0

01
,"

D
EV

(2
)=

10
.3

9,
p

<
.0

01
V

A
R

(G
10

)=
.0

02
,"

D
EV

(2
)=

10
.1

8,
p

<
.0

1
A

na
ly

sis
3:

M
ul

tiv
ar

ia
te

gr
ow

th
cu

rv
e

Fi
xe

d
ef

fe
ct

s
In

te
rc

ep
t

1.
43

∗
20

.4
6

1.
29

-1
.5

6
1.

66
∗

22
.8

4
1.

51
-1

.8
0

T
im

e
−

0.
07

∗
−

10
.7

8
−

0.
08

-−
.0

5
−

0.
06

∗
−

9.
87

−
0.

08
-−

.0
5

Va
ria

nc
e

co
m

po
ne

nt
b

σ
2

=
.7

2,
"

σ
2

=
.2

4c
σ

2
=

.6
7,

"
σ

2
=

.2
4c

V
A

R
(G

10
)=

1.
07

,"
D

EV
(4

)=
37

1.
69

,
p

<
.0

01
V

A
R

(G
30

)=
1.

21
,"

D
EV

(4
)=

40
0.

08
,

p
<

.0
01

V
A

R
(G

20
)=

.0
03

,"
D

EV
(4

)=
51

.7
3,

p
<

.0
01

V
A

R
(G

40
)=

.0
04

,"
D

EV
(4

)=
56

.7
8,

p
<

.0
01

N
ot

e.
Va

lu
e
=

T
he

un
st

an
da

rd
iz

ed
re

gr
es

sio
n

co
ef

fic
ie

nt
,t

=
t

st
at

ist
ic

,C
I=

co
nfi

de
nc

e
in

te
rv

al
,V

A
R

=
va

ria
nc

e,
D

EV
=

de
vi

an
ce

st
at

ist
ic

.
a T

he
pr

ed
ic

to
rv

ar
ia

bl
es

w
er

e
gr

an
d

ce
nt

er
ed

(i.
e.

,a
ve

ra
ge

sc
or

e
ac

ro
ss

al
la

ss
es

sm
en

to
cc

as
io

ns
an

d
al

lp
ar

tic
ip

an
ts

su
bt

ra
ct

ed
fr

om
ea

ch
in

di
vi

du
al

sc
or

e)
.T

he
re

fo
re

,t
he

in
te

rc
ep

tt
er

m
in

A
na

ly
sis

1
ca

n
be

in
te

rp
re

te
d

as
th

e
av

er
ag

e
sc

or
e

of
th

e
ou

tc
om

e
w

he
n

th
e

sc
or

e
of

th
e

pr
ed

ic
to

ra
sa

tt
he

ov
er

al
lm

ea
n)

.b
T

ho
ug

h
hi

er
ar

ch
ic

al
lin

ea
rm

od
el

in
g

(H
LM

)p
ro

vi
de

ss
ig

ni
fic

an
ce

te
st

so
ft

he
va

ria
nc

e
co

m
po

ne
nt

s,
m

an
y

(e
.g

.,
B

lie
se

&
Po

ly
ha

rt
,2

00
2;

Si
ng

er
,1

99
8)

ha
ve

ar
gu

ed
th

at
th

es
e

te
st

s
ar

e
st

at
ist

ic
al

ly
qu

es
tio

na
bl

e
an

d
su

gg
es

t
a

m
od

el
-c

on
tr

as
tin

g
ap

pr
oa

ch
to

ev
al

ua
te

th
e

sig
ni

fic
an

ce
of

va
ria

nc
e

in
th

e
Le

ve
l1

co
ef

fic
ie

nt
s

ac
ro

ss
Le

ve
l2

un
its

.T
hi

s
en

ta
ils

co
nd

uc
tin

g
th

e
an

al
ys

es
tw

ic
e,

fir
st

w
ith

th
e

co
ef

fic
ie

nt
fix

ed
to

be
co

ns
ta

nt
ac

ro
ss

Le
ve

l2
un

its
an

d
th

en
w

ith
th

e
co

ef
fic

ie
nt

fr
ee

to
va

ry
ac

ro
ss

Le
ve

l2
un

its
.T

he
re

su
lts

of
th

es
e

tw
o

an
al

ys
es

ar
e

co
m

pa
re

d
us

in
g

a
lo

g-
lik

el
ih

oo
d

ba
se

d
in

di
ca

to
r

of
m

od
el

fit
.A

sig
ni

fic
an

tly
im

pr
ov

ed
m

od
el

fit
w

he
n

al
lo

w
in

g
th

e
Le

ve
l

1
co

ef
fic

ie
nt

s
to

va
ry

ac
ro

ss
Le

ve
l2

un
its

in
di

ca
te

s
sig

ni
fic

an
t

va
ria

tio
n

in
th

e
Le

ve
l1

co
ef

fic
ie

nt
.I

n
H

LM
,t

he
de

vi
an

ce
st

at
ist

ic
(D

EV
)

is
a

lo
g-

lik
el

ih
oo

d
ba

se
d

in
di

ca
to

r
of

m
od

el
fit

,a
nd

th
e

di
ffe

re
nc

e
in

th
e

de
vi

an
ce

st
at

ist
ic

("
D

EV
)h

as
an

ap
pr

ox
im

at
e

ch
i-s

qu
ar

e
di

st
rib

ut
io

n
w

ith
th

e
de

gr
ee

so
ff

re
ed

om
eq

ua
lt

o
th

e
di

ffe
re

nc
e

in
th

e
nu

m
be

r
of

pa
ra

m
et

er
se

st
im

at
ed

be
tw

ee
n

th
e

tw
o

co
m

pe
tin

g
m

od
el

s
(R

au
de

nb
us

h
&

B
ry

k,
20

02
).

T
hi

s
m

od
el

-c
on

tr
as

tin
g

ap
pr

oa
ch

w
as

us
ed

to
te

st
w

he
th

er
or

no
tt

he
re

w
as

st
at

ist
ic

al
ly

sig
ni

fic
an

tv
ar

ia
nc

e
in

th
e

Le
ve

l1
co

ef
fic

ie
nt

s
(i.

e.
,i

ni
tia

l
st

at
us

an
d

slo
pe

)a
cr

os
sL

ev
el

2
un

its
(i.

e.
,i

nd
iv

id
ua

ls)
.c

Fo
rt

he
m

ul
tiv

ar
ia

te
ch

an
ge

m
od

el
,"

σ
2

is
ca

lc
ul

at
ed

by
co

m
pa

rin
g

th
e

es
tim

at
es

of
σ

2
fr

om
a

ba
se

lin
e

m
od

el
w

ith
on

ly
th

e
in

te
rc

ep
tt

er
m

s
in

cl
ud

ed
fo

re
ac

h
va

ria
bl

e
to

th
e

es
tim

at
es

of
σ

2
fr

om
fu

ll
m

ul
tiv

ar
ia

te
ch

an
ge

m
od

el
.

∗
p

<
.0

01
.

Journal of Traumatic Stress DOI 10.1002/jts. Published on behalf of the International Society for Traumatic Stress Studies.



628 Suvak et al.

Table 2. Estimates of Random Effects for Multivariate Growth Curve Model

Variances, covariances, and intercorrelations
of random intercepts and slopes

1 2 3 4

1 Intrusion intercept 1.21 1.04 −.04 −.04
ui1 (.13) (.10) (.01) (.01)

[9.12] [9.55] [−3.69] [−4.33]
2 Avoidance intercept .92 1.07 −.03 −.04

ui2 −0.11 (.01) (.11)
[9.81] [−2.62] [−.33]

3 Intrusion slope −.54 −0.392 .004
ui3 (.001)

[3.80]

.003
(.001)
[4.38]

4 Avoidance slope −.63 −.59 .95 .003
ui4 (.001)

[3.52]
Residual variances:
Residual variance of intrusion Var[e it(intrusion)] 0.729
Residual variance of avoidance Var[e it(avoidance)] 0.673

Note. The numbers in the upper right triangle and the diagonal are covariances (top) and their standard errors (middle enclosed
in parentheses) and critical (z) ratios [bottom enclosed in brackets, calculated by dividing the estimate of the covariance by the
standard error]. 1.96 is the critical value for α = .05, 2.58 for α = .01. The lower triangle contains the correlations. Boxes enclose
the estimates depicting the association between change over time in intrusion and change over time in avoidance.

a similar, moderate decrease in intrusion and avoidance symptoms
across the five assessment occasions. In other words, over the 17
months of the study (i.e., 1–18 months), these rape and robbery
victims demonstrate an expected decrease of .07 units per month
for intrusion and .06 units per month for avoidance.

These results revealed similar mean levels of initial status and
change over time for intrusion and avoidance. However, this does
not necessarily indicate that changes in intrusion are associated or
correlated with changes in avoidance. To illustrate, let us consider
a hypothetical example of a situation in which similar mean level
change would not correspond to correlated change over time in
intrusion and avoidance. Imagine that half of the participants ex-
hibited large decreases in intrusion, but no change over time in
avoidance, whereas the other half exhibited the opposite pattern,
no change in intrusion and large decreases in avoidance. In this
situation, if you averaged across all participants, you could find sim-
ilar mean levels of moderate change in intrusion and avoidance. At
the same time, because decreases in intrusion do not correspond to
decreases in avoidance, changes in intrusion and avoidance are not
correlated with each other. Therefore, whether or not two variables
exhibit similar mean levels of change over time is independent of
whether or not change in the two variables is correlated.

The covariance–variance matrix of the random effects from the
multivariate model includes an estimate of the association between
change over time in intrusion and change over time in avoidance.

This matrix is presented in Table 2, with coefficients for the pri-
mary associations of interest enclosed in boxes. A strong associa-
tion emerged between slopes (i.e., change over time) for intrusion
and avoidance with an estimated correlation of .95 (r 2 = .90).
Statistical significance can be evaluated by examining the z ratio
formed by dividing the estimate of the covariance for this asso-
ciation by the estimate of the standard error of the covariance.
This ratio value was 4.38, well over the critical value of 1.96 for
a significant effect with α = .05. This suggests that changes in
the frequency of intrusion symptoms are highly correlated with
changes in the frequency of avoidance symptoms. In other words,
rape and robbery victims who report significant decreases in the
frequency of intrusion symptoms over time tend to report simi-
lar decreases in the frequency of avoidance, those who report no
change over time in the frequency of intrusion symptoms tend to
report no change in the frequency of avoidance symptoms, and
those who report increases over time in the frequency of intrusion
symptoms tend to report similar increases in avoidance.

F I N A L C O M M E N T S
One way to extend the models described above is to include Level
2 predictor variables. The first model (examining the bivariate re-
lationship across all time points, but not examining change over
time) is extremely flexible in terms of the inclusion of Level 2
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predictors. Continuous or categorical Level 2 predictors can be
included to examine factors that may account for the Level 1
association between variables. For example, negative affectivity/
neuroticism has been identified as a generalized biological vulner-
ability underlying all anxiety and mood disorders, including PTSD
(Barlow, 2002). Therefore, the large bivariate association between
intrusion and avoidance may be accounted for by negative affec-
tivity/neuroticism. To test this hypothesis, a variable representing
negative affectivity/neuroticism could be added to the two Level 2
equations (Equations 3 and 4), and the impact of the inclusion of
this variable on the Level 1 intrusion–avoidance bivariate associa-
tion could be assessed. If the fixed effect is substantially diminished,
this would suggest that the intrusion–avoidance association is at
least partially accounted for by negative affectivity/neuroticism.

Level 2 predictors can also be included and interpreted as mod-
erators of the Level 1 bivariate association. Drawing upon an
example outside of the intrusion–avoidance context, one might
hypothesize that the relationship between posttraumatic wellbe-
ing and social support, measured at several different time points
after the traumatic event, varies as a function of gender, such that
social support is more beneficial for females, based on research sug-
gesting gender differences in stress-response systems (e.g., Taylor
et al., 2000). A dummy-coded gender variable could be added to
the Level 2 equations to evaluate whether the Level 1 association
between wellbeing and social support varies as a function of gender.
In a similar manner, Level 2 predictors can be added to the Level 2
equations of univariate and multivariate growth curve models to
examine whether or not initial status and change over time varies
as a function of a Level 2 variable.

Multivariate change can be examined using multilevel regres-
sion analyses or structural equation modeling (SEM)/latent growth
curve procedures (an alternative framework for conducting growth
curve analyses, see Chou, Bentler, & Pentz, 1998). MacCallum
et al. (1997) provided a comparison of these two approaches.
They emphasized that both approaches are powerful and many
analyses can be conducted using either approach with compara-
ble results. They suggested that one advantage of the multilevel
approach is that it is more flexible in the variety of ways that nonlin-
ear change can be incorporated. Plewis (2005) demonstrated how
multilevel multivariate growth curve models can include parame-
ters that model nonlinear/curvilinear change. On the other hand,
they note that SEM/latent growth curve models offer more flex-
ibility when examining correlates, predictors, and consequences
of change. These approaches offer different advantages and disad-
vantages, and the data structure available and research question at
hand should be used to determine which approach is most suitable.

We conclude by highlighting one of the primary advantages
of the multilevel regression approach: It is very flexible, both in
the models that can be evaluated (demonstrated above) and in the
types of data structures that it can accommodate. As noted earlier,
the number and timing of assessment points do not have to be
constant across participants. Therefore, one participant can have

five data points assessed at 1, 2, 3, 4, and 5 months postevent,
whereas another participant can have two data points assessed at
3 and 7 months postevent. In this sense, multilevel regression ap-
proaches are much more accommodating than SEM/latent growth
curve approaches. We hope that this discussion of multilevel re-
gression will encourage further development and use of innovative
methodologies to advance longitudinal trauma research.
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Appendix A

More Detailed Description of “Centering”

(Pages 623 and 624)

The term “centering” refers to subtracting a value from each
score of a predictor variable. “Mean centering” is the most com-
mon type of centering utilized and consists of subtracting the mean
value of a variable from each score in a distribution. There are two
primary reasons for mean centering: (a) when mean-centered vari-
ables are entered into a regression model, the intercept coefficient
can be interpreted as the value of the outcome at the mean of the
predictor variable (instead of the value of the outcome when the
predictor variable is zero, as is the case for non-centered predic-
tors), and (b) when examining interactions, mean centering before
creating product terms reduces multicolinearity due to large bi-
variate associations between the product terms and the predictor
variables. Centering in a multilevel regression framework can be
quite complex because Level-1 variables can be centered based
on each Level-2 unit’s (participant’s) mean (“group centering”) or
the mean of all scores across all participants (“grand centering”).
Enders and Tofighi (2007) described the implications of these dif-
ferent types of centering. For the current paper, grand centering

was exclusively used. In other words, centering was based on the
grand mean computed using all scores across all participants.

Appendix B

Setting Up a Data File to Conduct Multivariate Change Analyses

(Footnote 2: Page 625)

The first step in conducting a multivariate change analyses is to
set up an appropriate data file (see Figure 1). Let us briefly return
to the univariate model, where the data must be stacked so that
each row of data represents one assessment occasion; therefore,
each participant has multiple rows of data, one for each assess-
ment point. The top part of Figure 1 is structured to conduct
two separate univariate growth-curve models, one for intrusion
and one for avoidance, where each participant has five rows of
data. There are four columns containing an identity variable, an
intrusion score, an avoidance score, and a time variable (month
of assessment). The bottom half of Figure 1 shows how the data
need to be restructured to conduct a multivariate model. The
columns for the outcome variables, intrusion and avoidance, have
been combined into one column, labeled outcome, with the in-
trusion values in the top five rows and the avoidance values in the
bottom five rows of the column. Therefore, each participant now
has 10 rows of data (first five rows for intrusion scores, second five
rows for avoidance scores). The outcome variable is followed by
two dummy-coded variables. D intr marks the rows for which the
outcome variable contains intrusion scores. A value of 1 indicates
that the outcome score is intrusion, while a value of 0 specifies
that it is an avoidance score. D avoid marks the rows for which
the outcome variable contains avoidance scores, with the oppo-
site coding scheme of D intr. These two dummy-coded variables
are followed by three time variables: Time, T intr, and T avoid.
Time demarks the assessment occasion (in number of months),
and T intr and T avoid are computed by multiplying Time by the
D intr and D avoid variables. For T intr, the column contains the
values of the time variable (0, 2, 5, 11, 17) for rows with the out-
come variable containing intrusion scores and zeros for rows with
the outcome variable containing avoidance scores, and vice-versa
for the T avoid variable.

Appendix C

More Information On Specifying Separate Level-1 Residual
Terms for Each

Outcome

(Footnote 3: Page 625)

To accomplish this using HLM, a heterogeneous σ 2 can be
specified in the “Estimation Settings” options under the “Other
Settings” pull-down menu with one of the dummy-coded outcome
marker variables [D intr or D avoid] as a predictor of Level-1

Journal of Traumatic Stress DOI 10.1002/jts. Published on behalf of the International Society for Traumatic Stress Studies.



Examining Change Over Time With Multilevel Regression 631

ID Intrusion Avoidance Time
1 2.57 1.88 0
1 1.71 1.75 2
1 2.43 2.25 5
1 5.00 2.38 11
1 1.57 2.13 17
2 2.14 3.38 0
2 2.43 3.50 2
2 2.43 1.38 5
2 0.43 0.38 11
2 . . 17

ID Outcome D_intr D_avoid Time T_Intr T_Avoid
1 2.57 1 0 0 0 0
1 1.71 1 0 1 2 0
1 2.43 1 0 2 5 0
1 5.00 1 0 3 11 0
1 1.57 1 0 4 17 0
1 1.88 0 1 0 0 0
1 1.75 0 1 1 2 2
1 2.25 0 1 2 5 5
1 2.38 0 1 3 11 11
1 2.13 0 1 4 17 17

Univariate   
Data Structure

Multivariate  
Data Structure

Figure 1. Illustration of data structures. Adapted from Figure 3 of Bauer, Preacher, and Gil (2006).

variance; see Raudenbush, Bryk, & Congdon, 2005, for further
details.

Appendix D

More Information On the Variance/Covariance Matrix for the
Random Effects

(Page 625)

In HLM, matrices labeled tau containing the variances and
covariances for the random effects are printed in the output. For
standard models using full maximum likelihood estimates, three

matrixes for tau are printed in the output: tau (estimates of vari-
ance and covariance), the standard error of tau, and tau as corre-
lations. When specifying a heterogeneous σ 2, only tau and tau as
correlations are included in the output. However, the standard er-
rors for tau can be obtained by requesting the variance-covariance
matrices be saved into another file. This request can be specified in
the “Output Settings” menu located under the “Other Options”
pull-down menu. The file that is produced is labeled “tauvc.dat”,
and the diagonal of the bottom matrix contains the standard er-
rors of tau (see Raudenbush, Bryk, & Congdon, 2005, for further
details).
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